
 1

 Git and GitHub
 Course Material • Hamburg Coding School • 22.01.2022

 ─

 Outline
 ● Introduction to Git

 ○ What is git?
 ○ Installing Git

 ● Command Line Basics
 ● Git Setup
 ● Git Commands
 ● Staging Changes
 ● Git Status
 ● Undoing Changes

 ○ Resetting modified files
 ○ Removing files from the stage
 ○ Undoing a commit
 ○ Reverting a commit (optional knowledge)

 ● Branches
 ○ Git Commands for Branches
 ○ Merging a branch into master
 ○ Branching strategies (optional knowledge)

 ● Git Commit History
 ● Git Aliases (optional knowledge)
 ● GitHub
 ● Remote Repositories

 ○ Clone a Repository
 ○ Create a remote copy of your repository
 ○ Check what your remote is

 ● Push and Pull
 ● Pull Requests
 ● Solving Conflicts
 ● GitHub Pages
 ● Rebase (optional knowledge)

 2

 Git & GitHub

 Introduction to Git

 What is git?

 ● Git is a tool for version control.
 ● It is used for collaborative work on the same code base.
 ● Example:

 If the team that programs the game Super Mario works together, one developer wants
 to edit the shape of the clouds, and another wants to change the color of the tubes. Git
 makes it easy that they can both work on the same code simultaneously.

 ● All changes are saved in so-called commits .
 ● Many commits make up the version history , or commit history .

 Commit history (source: https://git-scm.com/book/en/v1/Getting-Started-About-Version-Control)

 ● Is git a language or a software? Git is a software.
 ● Git runs on the command line.
 ● There are applications with a graphical user interface, but for this workshop, we

 will use the command line.

 Installing Git

 Check if git is already installed:

 $ git --version
 git version 2.17.2 (Apple Git-113)

https://git-scm.com/book/en/v1/Getting-Started-About-Version-Control

 3

 On Mac:

 We need homebrew .
 Check if you have it installed:

 $ brew --version
 Homebrew 1.8.3

 If this gives an error, you need to install homebrew: https://brew.sh/

 /usr/bin/ruby -e "$(curl -fsSL
 https://raw.githubusercontent.com/Homebrew/install/master/install)
 "

 Then install git with homebrew like this:

 $ brew install git

 Verify if the installation was successful:

 $ git --version
 git version 2.17.2 (Apple Git-113)

 On Windows:

 Download and install git: https://gitforwindows.org/

 Open a command prompt and verify if git was successfully installed:

 $ git --version
 git version 2.9.2

https://brew.sh/
https://gitforwindows.org/

 4

 Command Line Basics
 For this, you can use the Terminal (on Mac), or the Command Prompt (on Windows), or
 use the Terminal in Visual Studio Code.

 cd <directory> Navigate into a directory

 cd .. Navigate up to the parent directory

 mkdir <directory> Create a new directory

 touch <file> Create a new file (Mac/Linux)

 type nul > file.txt Create a new file (Windows)

 ls List all files and directories in the current directory

 rm <file or folder> Delete a file or folder (Mac/Linux)

 rmdir <folder> Delete a folder (Windows)

 del <file> Delete a file (Windows)

 rm -r <folder> Delete a folder and all contents (Mac/Linux)

 rmdir /S <folder> Delete a folder and all contents (Windows)

 Tip:
 If you want to know what a command does, type it in: https://explainshell.com . It will
 give you an explanation and a breakdown of all commands and parameters.

 Git Setup
 If you use git for the first time, you need to set up a few things before you start:

 ● Define the user name
 ● Define your email

 This is needed so that git has information about the author of the changes.

 You do this with the following commands:

 $ git config --global user.name "John Doe"

 $ git config --global user.email johndoe@example.com

https://explainshell.com/

 5

 If you want to see the user name and email you defined, you can use:

 $ git config --list --show-origin

 You can also do these things by editing this file: ~/.gitconfig

 (Your .gitconfig file is in your home folder. It is a hidden file, so you need to configure
 your computer to show hidden files.)

 More information:
 To read more about git configuration and where global and local (project specific)
 configuration is stored, go to:
 https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

 Git Commands
 git init Create a new git project / initialize git

 git status What's the status in this git project?
 Green : it is staged for commit (git knows this change)
 Red : it has not been staged and would not be committed
 (explained below in more detail)

 git diff See what changed

 git add <filename> Add a change to git for the next commit.
 This command stages the changed file for the next commit.

 git add . Add all files that you have been working on.

 git commit Make a git commit

 This will open vim . Write the commit message and close with :x .
 If you don't want to use vim, you can use the command:

 git commit -m "Your commit message"

 Best Practice:
 Choose a simple commit message that describes precisely what has been changed.

https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

 6

 git log See the history of commits

 git --help Get help (read the manual)

 Official Documentation:
 You can look up all git commands here: https://git-scm.com/docs

 Staging Changes
 Before doing a commit, you have to collect all your changes that you want to commit on
 the stage . You can say: you need to stage them.

 You do that with the git add command.

 Files that are staged are marked green .

 If you then use the git commit command, all changes that were on the stage will be
 put into that commit.

 Git Status
 Git knows four different states of files:

 1. Untracked
 2. Unmodified
 3. Modified
 4. Staged

 If you create a new file locally, it is first untracked . Git knows that it is there, but it won’t
 do anything with it.

 If you add a file with the git add command, the file gets staged . You can also say, you
 put it on the stage . It means that git knows the file, has collected all changes and will
 include them in the next commit.

 If you commit your changes with the git commit command, everything on the stage
 will be put in a new commit. This will be added on top of your commit history. All
 changes that you committed now have the status unmodified .

 If you now change a file that has been added or committed before, git will know that
 there are changes that are not on the stage, i.e. the file is modified .

 You can always check the status of your files with git status .

https://git-scm.com/docs

 7

 The File Status Lifecycle
 (source: https://git-scm.com/book/en/v2/G) it-Basics-Recording-Changes-to-the-Repository

 Undoing Changes

 Resetting Modified Files:
 If you want to undo local changes, i.e. revert changes of modified files, you can do that
 with the command:

 git checkout -- <file>

 If you want to discard all changes in all modified files, you can use:

 git checkout -- .

 The dot is a shortcut for all files.

 Removing files from the stage:
 If you have staged files, but you don’t want to commit them, you can remove them from
 the stage with:

 git reset HEAD <file>

 Or if you want to remove all files from the stage:

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

 8

 git reset HEAD .

 Undoing a commit:
 You can undo the last commit by resetting it:

 git reset --soft HEAD~1

 The --soft flag has the effect that all changes of your last commit are not deleted, but
 they are now uncommitted modified files.

 If you are sure that you want to delete all changes of the last commit and never see
 them again, you can use the --hard flag instead:

 git reset --hard HEAD~1

 The tilde ~ sign followed by a 1 means: take the HEAD (your current position in the git
 history) and reset one commit from there.

 Reverting a Commit (Optional Knowledge):
 Instead of resetting a commit, you can also revert a commit.
 The difference is: if you reset a commit, you remove it; if you revert a commit, you add
 an additional commit to the history that undoes the changes.

 Reverting vs. Resetting
 (Source: https://alexdiliberto.com/talks/all-things-git/)

https://alexdiliberto.com/talks/all-things-git/

 9

 Reset

 You use this when:

 ● You want to undo the last
 commit(s).

 Revert

 You use this when:

 ● You want to undo a commit that is
 several commits back in the
 commit history.

 ● It is important that you see the
 moment in the commit history
 when the revert has been done
 (may be important in large
 projects with many developers).

 Branches
 If you want to collaborate on the same code base, you use branches, so everyone can
 commit changes independently.

 A branch is a string of commits that is independent of the other commits.

 Example:

 In the Super Mario development team, we have a
 current status of the published game. That's on the
 master branch.

 The developer who wants to change the cloud, creates a
 branch called cloud and makes his commits there.

 The developer who wants to change the tube, creates a
 branch called tube and makes his commits there.

 When they are done, each developer merges his
 changes into the master branch.

 This results in a commit history with multiple branches.

 The master branch is usually the default branch.

 10

 If you want to make changes independently from the other developers, you create a
 branch. When you are done, these can be merged back to the master branch.

 Git Commands for Branches

 git branch Shows all existing branches,
 marks the one you are on.

 git branch newbranch Creates a new branch called “newbranch”.

 git checkout newbranch Switches to the branch called “newbranch”.

 git checkout -b newbranch Shorthand for the two above: creates a new branch
 called “newbranch” and then switches to it.

 git branch -d oldbranch Deletes the branch “oldbranch”.

 Remember:
 Always make sure you are in the branch you want to be in, with: git branch

 Merging a branch into master
 First, you need to be on the master branch. git checkout master

 Then, you merge your branch into master. git merge branchname

 You don’t need the merged branch anymore, git branch -d branchname
 so you can delete it.

 Best Practice:
 Always delete branches that you don’t need anymore. The less branches you have,
 the better: it is much less confusing. Make it a habit to delete old branches before you
 create a new one.

 Note:

 You cannot delete a branch you are on. If you want to delete a branch, you need to be
 on a different branch.

 If the branch is not fully merged yet, you get an error message. To delete the branch
 anyway, type:

 git branch -D branchname

 11

 Best Practice:

 Give meaningful but short branch names. A branch name should describe the feature
 or bugfix you are working on.

 You usually use minus “-” between words:

 user-login
 fix-404-error

 A common branch naming strategy is to use “feature/” or “bugfix/” as a prefix:

 feature/user-login
 bugfix/404-error

 Optional Knowledge:
 If your team uses a ticket system, e.g. Jira , you can use the project name and ticket
 number to identify the task you are working on.
 In this example, we use a project called WEBSITE:

 feature/WEBSITE-347-user-login
 bugfix/WEBSITE-348-404-error

 Branching Strategies (Optional Knowledge)
 You can use git differently, depending on your team size.
 There are different branching strategies:

 If you work alone:

 It doesn't make so much sense to use a lot of branches. You can mainly use the master
 branch. It makes sense for larger changes to create branches, so you can continue
 working on the master branch, even though you are not finished with your work on the
 other branch.

 If you work in a team:

 You need multiple branches. The master branch is usually the one where the published
 version of your website or app is.

 An example for a popular branching strategy for larger teams with continuous delivery:

 https://nvie.com/posts/a-successful-git-branching-model/

https://www.atlassian.com/software/jira
https://nvie.com/posts/a-successful-git-branching-model/

 12

 Git Commit History
 It is a good idea to have a look at your git commit history on a regular basis.

 Showing the git history:

 git log

 This will look something like:

 commit ca82a6dff817ec66f44342007202690a93763949
 Author: Scott Chacon <schacon@gee-mail.com>
 Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

 commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
 Author: Scott Chacon <schacon@gee-mail.com>
 Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

 commit a11bef06a3f659402fe7563abf99ad00de2209e6
 Author: Scott Chacon < schacon@gee-mail.com >
 Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

 If the log is getting too long, git will show a colon : at the end. This means: you are in
 scroll mode. You can scroll down or up with your arrow keys.

 💡 Exit the scroll mode by typing q

 To see only one line per commit, you can use:

 $ git log --pretty=oneline

mailto:schacon@gee-mail.com

 13

 Output:

 ca82a6dff817ec66f44342007202690a93763949 changed version number
 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test
 a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

 For a super pretty graph with colors, you can use this command:

 git log --graph --pretty=format: '%Cred%h%Creset
 -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset'
 --abbrev-commit

 Output:

 * 2d3acf9 - (HEAD, master) ignore errors from SIGCHLD on trap (11 days ago) <Scott Chacon>
 * 5e3ee11 - Merge branch 'master' of git://github.com/dustin/grit (2 weeks ago) <Scott
 Chacon>
 | \
 | * 420eac9 - Added a method for getting the current branch. (3 weeks ago) <Scott Chacon>
 * | 30e367c - timeout code and tests (3 weeks ago) <Scott Chacon>
 * | 5a09431 - add timeout protection to grit (3 weeks ago) <Scott Chacon>
 * | e1193f8 - support for heads with slashes in them (3 weeks ago) <Scott Chacon>
 | /
 * d6016bc - require time for xmlschema (7 weeks ago) <Scott Chacon>
 * 11d191e - Merge branch 'defunkt' into local (9 weeks ago) <Scott Chacon>

 Git Aliases (optional knowledge)
 In git, you can save long commands under short names, creating your own shortcuts.
 These are called aliases .

 In the example above, the command for making a pretty graph log is very long, so we
 want to create an alias for it. We do it like this:

 $ git config --global alias.lg "log --color --graph
 --pretty=format: '%Cred%h%Creset -%C(yellow)%d%Creset %s
 %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit"

 What is happening here is: we save an alias called “ lg ” in the global git config file (see
 the alias.lg there?).

 14

 Now we can use this on the command line like:

 $ git lg

 It will output our pretty graph log just as the long command.

 To create your own git alias, you can use it like this:

 $ git config --global alias.lg "..."

 In the double quotes you put your git command, just without “git” (everything after “git”).

 The git log color coding example is from here:
 https://coderwall.com/p/euwpig/a-better-git-log

 GitHub
 While git is a software, GitHub is a platform to host your git repositories.

 You can make it private (visible only for you) or public (visible for anyone, used for open
 source).

 Git has a user interface that displays diffs and commits neatly.

 https://github.com/

 Remote Repositories
 What is a repository?

 A git repository is a project, or the root folder of your project.
 If you used git init to initialize it, you created a repository.

 Now, git is made so that many people can work on the same code base. This is realized
 by having a copy of the repository somewhere on a server, where everyone can access
 it. This copy is called: remote .

 What is a remote?
 Remote is your server where you store your git repository. With that, you synchronize
 your local repository that is on your laptop.

 In our case, we will use GitHub as remote.

 Clone a Repository

https://coderwall.com/p/euwpig/a-better-git-log
https://github.com/

 15

 Cloning means creating a copy of a remote repository.

 $ git clone <url of a remote repository>

 Create a remote copy of your repository
 1. Create an empty new repository on GitHub.
 2. Upload your local repository to this new GitHub repository:

 $ git remote add origin <url to your GitHub repository>

 Check what your remote is
 Sometimes you want to check if you have a remote, or what your remote is.
 Remotes have a name, also called an alias , and a URL (the link to the remote).

 To see if you have a remote, and what its alias is, use:

 $ git remote show

 In our case, this shows origin . This is the name or alias for our remote server.
 That’s the default name that every remote repository gets.
 You usually leave it at that. Just if you want to add more remotes, you would use
 different names.

 To see what the URL of the remote is, use:

 $ git remote show origin

 This will show something like this:

 * remote origin

 Fetch URL: git@github.com:hamburgcodingschool/website.git

 Push URL: git@github.com:hamburgcodingschool/website.git

 HEAD branch: master

 Push and Pull

 16

 To push your local, committed changes to your remote repository, use:

 $ git push

 If your branch is new, you need to add something to upload it:

 $ git push -u origin <branch name>

 To see if there are changes that someone else pushed to remote:

 $ git fetch

 To pull these changes to your local repository:

 $ git pull

 Pull Requests
 GitHub has a feature called Pull Requests.
 A pull request is a request to merge a branch back to master (or back into the original
 branch where you branched it from).

 The easiest way to create a Pull Request is to do so from the GitHub website.

 17

 For example, if you pushed something to a new branch, there will be a yellow button for
 creating a Pull Request on the main page of your GitHub repository.

 Pull Requests are a good way to have your team mates look at your code before it is
 merged and do a code review .

 Pull Request Workflow:

 On GitHub:

 1. Click on “Create pull request”.
 2. Check your changes below. Correct mistakes, if you find any, and push them

 again.
 3. Give the pull request a meaningful title, and some description if it is a larger

 change.
 4. Create the pull request.
 5. Choose someone to give you a code review.
 6. If they request changes, change your code and push again.
 7. If they approve, click “Squash and merge.” (If there are conflicts, solve them

 directly in GitHub if possible).
 8. After merging, click “Delete branch” to delete the merged branch.

 Locally:

 1. Go to the master branch git checkout master
 2. Get the new commits of the merged branch git pull
 3. Delete the old branch git branch -d oldBranch

 Solving Conflicts
 There might be a situation where both your team mate and you changed the same file,
 and now you want to merge both changes into master.

 Git cannot know which version has preference, because only humans may do that, so it
 tells you: there is a conflict.

 On the command line, this looks something like this:

 $ git checkout master

 $ git merge iss53

 Auto-merging index.html

 CONFLICT (content): Merge conflict in index.html

 Automatic merge failed; fix conflicts and then commit the result.

 18

 In the file that has the conflict (here: index.html), it marks the conflict something like
 this:

 <<<<<<< HEAD:index.html
 <div id="footer">contact : email.support@github.com </div>
 =======
 <div id="footer">
 please contact us at support@github.com
 </div>
 >>>>>>> iss53:index.html

 Both changes have changed the same line. Now you need to erase everything except
 the change that you want to keep. If you prefer the second version, it should now look
 like this:

 <div id="footer">
 please contact us at support@github.com
 </div>

 Then you add the file: git add index.html

 And then you do: git commit

 This is how git conflicts are solved. ✌

 More Information:
 To read more about solving conflicts in git, refer to:
 https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

 GitHub Pages
 You can use GitHub for publishing your website.

 GitHub Pages is some sort of web space. It works with GitHub.

 Instead of FTP and using a web server, we can use GitHub Pages.

 For that, the repository needs to be public, or else you need to have a Pro account.

 You can make a repository public on Settings > Danger zone .

mailto:email.support@github.com
mailto:support@github.com
mailto:support@github.com
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

 19

 Rebase (optional knowledge)
 Sometimes you have the following situation:

 Your branch has changes, but master also has changes.
 You don't want to merge master into your branch, but you want your branch to build on
 the newest commits on master.

 With rebase you can take your branch and put it on the latest commits on master.

 $ git rebase master

 This means that you “rewrite history”: the branch you are currently on will be “plucked
 out” and planted on top of the master branch.

 Watch out : after a git rebase master you have to do a git push -f so that the
 remote is the same as yours locally.

 Rebasing - Expert Mode 🤓 (optional knowledge)

 There is also an interactive mode for rebasing. With that, you can make even more
 things with it, e.g. rewrite the commit history.

 $ git rebase HEAD~3 -i

 This opens a vim editor, that looks something like this:

 pick f7f3f6d changed my name a bit
 pick 310154e updated README formatting and added blame
 pick a5f4a0d added cat-file

 # Rebase 710f0f8..a5f4a0d onto 710f0f8
 # ...

 There you can, for example, squash multiple commits to one.
 You do this by changing the prefix which currently is pick.

 20

 pick will keep that commit with that commit message.

 amend will let you change the commit or commit message.

 squash will put the changes in that commit into the one with pick.

 drop lets the commit disappear, as if it was never there.

 💡 Close the vim editor with :wq!

 If there are conflicts, you need to solve them manually.
 Once you did that, you add the files with git add , and then do:

 $ git rebase --continue

 It is possible that you need to solve the same conflicts multiple times, because git takes
 each single commit and puts them into its new place.

 Rebasing is a difficult thing. It can be a valuable skill knowing how to use rebase,
 but if you have little experience, it is ok to not know the details. It is totally ok to first
 try that together with a mentor or teacher.

 Ask us anytime if you need help!

 More Information:
 Rebasing: https://git-scm.com/book/en/v2/Git-Branching-Rebasing
 Rewriting history: https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

 21

 Glossary

 version control A system that you can use to save versions of your files

 commit A version of your project

 version history /
 commit history

 The list of all versions of your project

 repository Your project

 vim A text editor on the command line

 HEAD Your current position in the git commit history / branches.

 remote A remote repository that you can access via the internet.

 alias 1. A custom shortcut for a command.
 2. A short name for the remote.

 General Commands for the Command Line

 cd <directory> Navigate into a directory

 cd .. Navigate up to the parent directory

 mkdir <directory> Create a new directory

 touch <file> Create a new file (Mac/Linux)

 type nul > file.txt Create a new file (Windows)

 ls List all files and directories

 rm <file or folder> Delete a file or folder (Mac/Linux)

 rmdir <folder> Delete a folder (Windows)

 del <file> Delete a file (Windows)

 22

 rm -r <folder> Delete a folder and all contents (Mac/Linux)

 rmdir /S <folder> Delete a folder and all contents (Windows)

 Git Commands

 git --version Tells you which version of the git software is
 currently installed

 git init Create a new git project / initialize git

 git status What's the status in this git project?
 Green : it is staged for commit (git knows this
 change)
 Red : it has not been staged and would not be
 committed

 git diff See what changed

 git add <filename> Add a change to git for the next commit. This
 command stages the changed file for the next
 commit.

 git add . Add all files that you have been working on.

 git commit Make a git commit. This will open vim . Write the
 commit message and close with :x .

 git commit -m "Your commit
 message"

 Make a git commit and include the commit
 message.

 git log See the history of commits

 git --help Get help (read the manual)

 git checkout -- <file> Revert changes in a modified file

 git checkout -- . Revert changes in all modified files

 git reset HEAD <file> Removes a file from the stage

 23

 git reset HEAD . Removes all files from the stage

 git reset --soft HEAD~1 Undo the last commit by resetting it.
 The --soft flag has the effect that all changes of
 your last commit are not deleted, but they are
 now uncommitted modified files.
 The tilde ~ sign followed by a 1 means: take the
 HEAD (your current position in the git history) and
 reset one commit from there

 git reset --hard HEAD~1 Deletes all changes of the last commit to never
 see them again.

 git branch Shows all existing branches, and marks the one
 you are on.

 git branch newbranch Creates a new branch called “newbranch”

 git checkout newbranch Switches to the branch called “newbranch”

 git checkout -b newbranch Shorthand for the two above: creates a new
 branch
 called newbranch and then switches to it

 git branch -d oldbranch Deletes the branch “oldbranch”

 git clone <url of a remote
 repository>

 Creates a copy on your computer of a remote
 repository

 git remote add origin <url
 to your GitHub repository>

 Creates a remote copy of your repository

 git remote show origin Shows the URL of the remote repository

 git push Pushes your local, commited changes to your
 remote repository

 git push -u origin <branch
 name>

 To push a branch for the first time to the remote

 git fetch Fetches all information about the remote
 repository.

 24

 git pull Pull all new changes from the remote repository
 to your local repository.

 git merge master Merge the branch “master” into the branch you
 are currently on

 git rebase master Rewrite history so that the branch you are
 currently on will be “plucked out” and planted on
 top of the master branch.

 Official Documentation:
 You can look up all git commands here: https://git-scm.com/docs

https://git-scm.com/docs

 25

 Useful Links
 The Git Book: https://git-scm.com/book/en/v2

 Git Documentation: https://git-scm.com/docs

 Explain Shell Commands: https://explainshell.com

 Online book with cheat sheets: https://www.git-tower.com/learn/git/

 Slides of an introduction to git: https://alexdiliberto.com/talks/all-things-git/

 GitHub: https://github.com/

 GitHub and Git Tutorial: https://guides.github.com/introduction/git-handbook/

 Excellent git tutorial and cheat sheet: https://duzun.me/tips/git

 Adding a remote: https://help.github.com/articles/adding-a-remote/

 An example for a popular branching strategy for larger teams with continuous delivery:

 https://nvie.com/posts/a-successful-git-branching-model/

https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://explainshell.com/
https://www.git-tower.com/learn/git/
https://alexdiliberto.com/talks/all-things-git/
https://github.com/
https://guides.github.com/introduction/git-handbook/
https://duzun.me/tips/git
https://help.github.com/articles/adding-a-remote/
https://nvie.com/posts/a-successful-git-branching-model/

